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In modern physics, one of the greatest divides is that between space—time and quantum
fields, as the fiber bundle of the Standard Model indicates. However, on operational
grounds the fields and space—time are not very different. To describe a field in an
experimental region we have to assign coordinates to the points of that region in order
to speak of “when” and “where” of the field itself. But to operationally study the
topology and to coordinatize the region of space-time, the use of radars (to send and
receive electromagnetic signals) is required. Thus the description of fields (or, rather,
processes) and the description of space—time are indistinguishable at the fundamental
level. Moreover, classical general relativity already says—albeit preserving the fiber
bundle structure—that space-time and matter are intimately related. All this indicates
that a new theory of elementary processes (out of which all the usual processes of
creation, annihilation, and propagation, and consequently the topology of space-time
itself would be constructed) has to be devised. In this review the foundations of such a
finite, discrete, algebraic, quantum theory are summarized. The theory is then applied
to the description of spin-1/2 quanta of the Standard Model.
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1. INTRODUCTION

... One can give good reasons why reality cannot at all be represented by a continuous
field. From the quantum phenomena it appears to follow with certainty that a finite
system of finite energy can be completely described by a finite set of numbers (quantum
numbers). This does not seem to be in accordance with a continuum theory, and must
lead to an attempt to find a purely algebraic theory for the description of reality. But
nobody knows how to obtain the basis of such a theory.

Albert Einstein, 1955

There are essentially three major areas of physics that have been puzzling
me for the last several years: possibility of quantum-field — space—time unification
beyond the Standard Model, its experimental tests, and the cosmological constant
problem. All of them are very closely related, and reflect our, physicists’, belief
that Nature at its deepest and most fundamental level is simple, is governed by
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simple universal laws, and that there must be a theory that could describe, explain,
and unify all the intricacies of the world around us in one beautiful and elegant
scheme. | do, however, believe that no such “final” theory of Nature can ever
be found, at least not the one based on the mathematical axiomatic method, as
Goedel's theorems indicate (Appendix A).

The quest for unification originated in my numerous conversations with David
Finkelstein, who had always emphasized the importance of algebraic simplicity in
physics. This simplicity is exactly what mathematicians mean when they speak of
simple groups and algebras. In physics, algebraic simplicity is the symbol of unity
and beauty. For example, in classical mechanics, if time couples into space (as
is expressed by Galilean transformations), then there should be—on the grounds
of simplicity—a coupling of space into time, and that's exactly what Lorentz
transformations establish.

In modern physics, one of the greatest divides is that between space—time and
qguantum fields, as the fiber bundle of the Standard Model indicates. However, on
operational grounds the fields and space—time are not very different. To describe
a field in an experimental region we have to assign coordinates to the points of
that region in order to speak of “when” and “where” of the field itself. But to
operationally study the topology and to coordinatize the region of space-time, the
use of radars (to send and receive electromagnetic singals) is required. Thus the
description of fields (or, rather, processes) and the description of space—time are
indistinguishable at the fundamental level. Moreover, classical general relativity
already says—albeit preserving the fiber bundle structure—that space—time and
matter are intimately related. All this indicates that a new theory of elementary
processes (out of which all the usual processes of creation, annihilation, and prop-
agation, and consequently the topology of space—time itself would be constructed)
has to be devised.

In this paper | present the foundations of such a finite, discrete, algebraic,
guantum theory, and apply it to the description of spin-1/2 quanta of the
Standard Model. The basic principle of theory can be summarized as
follows:

1) Operationality The statements of physics have the foliwe do so-and-
so, we will find such-and-sucfithe primary element of the theory is thus
aprocesqcalledoperationwhen driven by the experimenter).

2) Process atomisnAny process, dynamical or not, of any physical system
must be viewed as aaggregateof isomorphic elementary operations of
finite durationy, provisionally callecchronons

3) Algebraic simplicity.The dynamical and the symmetry groups (and, con-
sequently, the operator algebra) of any physical system musstripde(in
algebraic sense).

4) Clifford statistics.Chronons obey Clifford statistics.
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The operator algebra of a chronon aggregate is a real Clifford algebra of
a very large number of dimensions. The chronons themselves are represented
by the generators (spinsy, of that Clifford algebra, with the property
y2==+1

Using the algebra of an ensemble of many chronons | algebraically simplify
the non-semisimple Dirac—Heisenberg algebra of relativistic quantum mechanics,
unifying the space—time, energy—momentum, and spin variables of the electron.
| also propose a new dynamics that reduces to Dirac’s dynamics for fermions
with the usual Heisenberg commutation relations in the continuum limit, when
the numbe of elementary processes becomes infinite and their duratpoes
to zero. The complex imaginary unitnow a dynamical variable, the mass term
m, and a new spin—orbit coupling not present in the Standard Model, all appear
naturally within the new simplified theory.

2. ELEMENTARY OPERATIONS AND CLIFFORD STATISTICS

... The situation, however, is somewhat as follows. In order to give physical significance
to the concept of time, processes of some kind are required which enable relations to be
established between different places.

Albert Einstein, 1955

2.1. Process Atomism

We start our work with the idea thany process, dynamical or not, of any
physical system should be viewed as an aggregate of isomorphic elementary op-
erations We call such fundamental operatiottgonons

The dynamics of a physical system is usually specified either by a Hamil-
tonian, or by a Lagrangian. It represents the time evolution of the system under
study between our initial and final determination actions. The simplest and more
or less representative example of a dynamical process is that of time evolution of
an electron subjected to an external electromagnetic field.

Let us assume that a system of classical charges, magnets, and current car-
rying coils and wires is distributed in a definite way throughout the experimental
region. It produces some definite electric and magnetic fields, in which the elec-
tron under study moves. The action of the field on the electron defines electron’s
dynamics.

We can change the dynamics by rearranging the elements of the field-
producing system—the charges, the wires, and so on. If the dynamics is com-
posed of elementary operations, as is assumed by our atomistic hypothesis, the
change in the dynamics must be accomplished by permutation of the underlying
chronons.
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If we want to have different dynamics, the permutation has to have a definite
effect on the aggregate of our fundamental operations. In other words, we need to
assign a statistics to the chronons, and that statistics musirabeliar?

Thus, the first question that has to be answered in setting up an algebraic quan-
tum theory of composite processes is: What statistics do the elementary actions
have?

Ordinarily, processes (space—time event, field values, etc.) have been assumed,
though implicitly, to be distinguishable, being addressed by their space-time co-
ordinates. If considered classical, they obey Maxwell-Boltzmann statistics.

In our theory, the elementary processes of nature obey Clifford statistics,
which is similar to be the spinorial statistics of Nayak and Wilczek. We apply
this statistics first to toy models of particles in ordinary space—time simply to
familiarize ourselves with its properties. In our construction the representation
space of the permutation group is the whole (spinor) space of the composite. The
permutation group is not assumed to be a symmetry of the Hamiltonian or of its
ground subspace. It is used not as a symmetry group but as a dynamical group of
an aggregate.

2.2. Quantification Procedures and Statistics

Apart from the atomism of actions discussed above, we suggest thigher
energies the present complex quantum theory with its unitary group will expand
into a real quantum theory with an orthogonal group, broken by an approximate
i operator at lower energiesTo implement this possibility and to account for
double-valuedness of spin in Nature, we develop a new real quantum double-
valued statistics. In this statistics, called Clifford, we represent a swap (12) of two
quanta by the differencg — y» of the corresponding Clifford units. The operator
algebra of an ensemble is the Clifford algebra over a one-body real Hilbert space.

2Recall that a statistics @belianif it represents the permutation grody on theN members of an
ensemble by an abelian group of operators inthbody mode space.

The usual Fermi-Dirac or Bose—Einstein statistics are abelian. In a sense they are trivially abelian
because they represent each permutation by a number, a projective representation of the identity
operator. Entities with scalar statistics are regardeiddistinguishable Thus bosons and fermions
are indistinguishable.

Nonabelian statistics describe distinguishable quanta.

One nontrivial example of nonabelian statistics was given by Nayak and Wilczek (1996) and
Wilczek (1998b) in their work on quantum Hall effect. It was based on the earlier work on non-
abelions of Read and Moore (1992) and Moore and Read (1990). Read and Moore use a subspace
corresponding to the degenerate ground mode of some realistic Hamiltonian as the representation
space for a nonabelian representation of the permutation dguacting on the composite ofn2
quasiparticles in the fractional quantum Hall effect. This statistics, Wilczek showed, represents the
permutation group on a spinor space, permutations being represented by noncommuting spin opera-
tors. The quasiparticles of Read and Moore and of Wilczek and Nayak are distinguishable, but their
permutations leave the ground subspace invariant.
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Unlike the Maxwell-Boltzmann, Fermi—Dirac, Bose—Einstein, and parastatistics,
which are tensorial and single-valued, and unlike anyons, which are confined to two
dimensions, Clifford statistics is multivalued and works for any dimensionality.
Interestingly enough, a similar statistics was proposed by Nayak and Wilczek
(1996) for the excitations in the theory of fractional quantum Hall effect.

To develop some feel for this new statistics, we first apply it to toy quanta. We
distinguish between the two possibilities: a real Clifford statistics and a complex
one. A complex-Clifford example describes an ensemble with the energy spec-
trum of a system of spin-1/2 particles in an external magnetic field. This (maybe
somewhat prematurely) supports the proposal that the double-valued rotations—
spin—seen at current energies arise from double-valued permutations—swap—to
be seen at higher energies. Another toy with real Clifford statistics illustrates
how an effective imaginary unit can arise naturally within a real quantum
theory.

2.2.1. Quantifiers

Allthe common statistics, including Fermi—Dirac (F-D), Bose—Einstein (B-E),
and Maxwell-Boltzmann (M-B), may be regarded as various prescriptions for con-
structing the algebra of an ensemble of many individuals from the vector space of
one individual. These prescriptions convert “yes-or-no” questions about an indi-
vidual into “yes-or-no” and “how-many” questions about an ensemble of similar
individuals. Sometimes these procedures are called “second quantization.” This
terminology is unfortunate for obvious reasons. We will not use it in our work.
Instead, we will speak ajuantification

We use the operational formulation of quantum theory presented in Appendix
A. As we pointed out, kets represent initial modes (of preparation), bras represent
final modes (of registration), and operators represent intermediate operations on
quantum. The same applies to an ensemble of several quanta.

Each of theusualstatistics may be defined by an associated linear mapping
Q' that maps any one-body initial mogeinto a many-body creation operator:

QN :Vi—>Us, v Qly=1. 1)

Here V, is the initial-mode vector space of the individual | adgd = EndVs
is the operator (or endomorphism) algebra of the quantified system S; ifhe
Qf reminds us thaQ' is contragredient to the initial modes. We write the
mappingQ' to the left of its argumeny ' to respect the conventional Dirac order
of cogredient and contragredient vectors in a contraction.

Dually, the final modes/ T of the dual spacés»’,T are mapped to annihilators
in As by the linear operato®,

Q:V > Us, yieylQ=yl )
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We call the transformatio the quantifierfor the statisticsQ and Q' are
tensors of the type

C
Q=(Q%). Q'=(Q%%s). ®)
wherea indexes a basis in the one-body sp&¢end B, C index a basis in the
many-body spac¥s.

The basic creators and annihilators associated with an arbitrary basis
{eala=1,...,N} C V, and its reciprocal basig? |la=1,..., N} C \/|T are
then

Q'es 1= & =: Q' 4)
and
Q=& = Q% (5)
The creator and annihilator for a general initial madare
(?]L (&dl//a) = Qfawa;
(¢7.6%) Q =012 Q% (6)
respectively.

We require that quantification respects the adjpointhis relates the two
tensorsQ andQf:

¥'Q = (QTy)T. (7
The rightmost is the adjoint operation for the quantified system. Therefore
é; = Mabébv (8)

with Mgy, being the metric, the matrix of the adjoint operation, for the individual
system.

A few remarks on the use of creation and annihilation operators would now
be appropriate.

If we choose to work exclusively with aN-body system, then all the initial
and final selective actions (projections, or yes—no experiments) on that system can
be taken asimultaneousharp production and registration af the N particles
in the composite with no need for one-body creators and annihilators. The theory
would resemble that of just one particle. The elementary nonrelativistic quantum
theory of atom provides such an example.

In real experiments much more complicated processes occur. The humber of
particles in the composite may vary, and if a speeatuummode is introduced,
then those processes can conveniently be described by postulating elementary
operations of one-body creation and annihilation. Using just the notion of the vac-
uum mode and a simple rule by which the creation operators act on the many-body
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modes, it is possible to show (Weinberg, 1995) #raf operator olsucha many-
body theory may be expressed as a sum of products of creation and annihilation
operators.

In physics shifts in description are very frequent, especially in the theory of
solids. The standard example is the phonos description of collective excitations in
crystal lattice. There the fundamental system is an ensemble of a fixed number of
ions without any special vacuum mode. An equivalent description is in terms of
a variable number of phonons, their creation and annihilation operators, and the
vacuum.

It is thus possible that a deeper theory underlying the usual physics might
be based on a completely new kind of description. Finkelstein some time ago
(personal conversations with Finkelstein, 1999) suggested that the role of atomic
processes in such a theory might be played by swaps (or permutations) of quantum
space—-time events. Elementary particles then would be the excitations of a more
fundamental system. The most natural choice for the swaps is provided by the
differences of Clifford units (F8) defined in Appendix F.

All this prompts us to generalize from the common statistics to more general
statistics.

A linear statisticswill be defined by a linear corresponden@é called the
guantifier,

Q':Vi—Us, v Qly =1, 9)

[compare (1)] from one-body modes to many-body operateasgebraically gen-
erating the algebrals := End Vs of the many-body theory.

In general @ does not produce a creator and Q does not produce an anni-
hilator, as they do in the common statistics.

2.2.2. Constructing the Quantified Algebra

We construct the quantified algeh#g from the individual spac®, in four
steps (personal conversations with Finkelstein, 1999) as follows (see Appendix C
for details.):

1. We form the quantum algebr&(V,), defined as the fregalgebra gener-
ated by (the vectors ofy,. Its elements are all possible iterated sums
and products and-adjoints of the vectors o¥,. We require that the
operations {, x, 1) of A(V,) agree with those o¥, where both are
meaningful.

2. We construct the idedR c A of all elements ofA(V;) that vanish in
virtue of the statistics. It is convenient and customary to defiri®y a set
of expressionR, such thatthe commutation relations between elements of
A(V) have the formr = Owithr € R. ThenR consists of all elements of
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A(V)) that vanish in virtue of the commutation relations and the postulates
of af-algebra.

LetR be closed undey. Let R be the set of all evaluations of all the
expressions iR when the variable vectorg in these expressions assume
any valuesy € V. ThenR = A(V))RoA(V). Clearly,R is atwo-sided
ideal of A(V)).

3. We form the quotient algebra

As = AM)/R, (10)

by identifying elements ofi(V;) whose differences belong 1.
If one is interested in the system with a fixed number of particles,
one adds a step:
4. Take the subalgebr® AsP, whereP is the projection on the selected
eigenspace of theumber operator B,

N
Ns:= ) &&, (11)
a=1

wherek labels the basis elements\gfandN = dimV,.
Thus in all the usual statisticgls is the sum
As=Ao+ A1+ A2+ -+ (12)

of 0-, 1-, 2-,... particle algebras. In Clifford statistics (see below), on the other
hand, the “number operator” is

N
Ne= Y Gaov®y" =N, (13)
a,b=1
(y? being the Clifford generators), which means that the nuniberf elements
in the Clifford ensemble is fixed by the dimensionality of the corresponding one-
quantum Hilbert space.

In any case, as the result of the above construct@hmaps each vector
¥ € Vjinto its residue clasg + R.

Historically, physicists carried out one special quantification first. Since in
classical physics one multiplies phase spaces when quantifying, they assumed that
in qguantum mechanics one should multiply Hilbert spaces, forming the tensor
product

N
Vs=@Wi =V (14)
p=0

of N individual space¥,. To improve agreement with experiment, they removed
degrees of freedom in the tensor product connected with permutations, reducing
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VN to a subspacBsV," invariant under all permutations of individuals. H&eis
a projection operator characterizing the statistics. The many-body algebra was then
taken to be the algebra of linear operators on the reduced spaeeEnd PsV,N.

We call a statistics builtin that way on a subspace of the tensor algebra over the
one-body initial mode space tansorialstatistics. Tensorial statistics represents
permutations in a single-valued way. The common statistics are tensorial.

Linear statistics is more general than tensorial statistics, in that the quotient
algebrad = A(V,)/R defining a linear statistics need not be the operator algebra
of any subspace of the tensor space Veand need not be single-valued. Com-
mutation relations permit more general statistics than projection operators do. For
example, anyone statistics is linear but not tensorial.

For another exampleds may be the endomorphism algebra of a spinor space
constructed from the quadratic spageSuch a statistics we callspinorial statis-
tics. Clifford statistics, the main topic of this work, is a spinorial statistics. Linear
statistics includes both spinorial and tensorial statistics (personal conversations
with Finkelstein, 1999).

The F-D, B-E, and M-B statistics are readily presented as tensorial statistics.
We give their quantifiers next (Finkelstein, 1996). We then generalize to spinorial,
nontensorial, statistics.

2.2.3. Standard Statistics

Maxwell-Boltzmann statisticé classical M-B aggregate is a sequence (up
to isomorphism) andQ = Seq, thesequencdorming quantifier. The quantum
individual | has a Hilbert space¢ = V, over the fieldC. The vector space for the
guantum sequence then is the (contravariant) tensor algbeaTenV,, whose
product is the tensor produgt

Vs = TanV, (15)

with the natural induced. The kinematic algebrads of the sequence is the
T-algebra of endomorphisms of Tén, and is generated by € V, subject to
the generating relations

Vi =1yle. (16)
The left-hand side is an operator product, and the right-hand side is the contraction
of the dual vectors T with the vectorp, with an implicit unit element & As as a
factor.

Fermi—Dirac statisticsHere Q = Set, thesetforming quantifier. The kine-
matic algebra for the quantum set has defining relations

Yo+ =0, o+ dyt=yTe, (17)
forall ¢, ¢ € V.
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Bose-Einstein statistictlere Q = Sib, thesib-forming quantifier. The sib-
generating relations are

Vo —o¥ =0, Yip—gyl =14ylg, (18)

forall ¥, ¢ € V,.
The individuals in each of the discussed quantifications, by construction, have
the same (isomorphic) initial spaces. We call such individisaisorphic

2.2.4. The Representation Principle

If we have defined how, for example, one translates individuals, this should
define a way to translate the ensemble. We thus impose the following.

Requirement of a quantification. Any unitary transformation on an individual
guantum entity induces a unitary transformation on the quantified system, defined
by the quantifier.

This does not imply that, for example, the actual time-translation of an en-
semble is carried out by translating the individuals: That would mean that the
Hamiltonians combine additively, without interaction. The representation princi-
ple states only that there is a well-defined time-translation without interaction. This
gives a physical meaning to interaction: it is the difference between the induced
time-translation generator and the actual one.

Thus we posit that anjunitary transformation

u:Vv, >V, Y= Uy

of the individual ket-spac¥, also act naturally on the quantified mode spége
through an operator

0:V3—>Vs, Iﬂl—)Ol/f,
and on the algebrals according to

Uids—> As, Y0y =040" (19)

This is therepresentation principle
Recall Infinitesimal formofU : V|, — V, is

U=1+Gs9, (20)

whereG = —G' : V| — V, is the anti-Hermitian generator adé is an infinites-
imal parameter. The infinitesimal anti-Hermitian generatérmake up the Lie
algebradU, of the unitary group Yof the one-body theory.

In terms of generators the representation principle is expressed by

G: 9 Gy =[G, yl. (21)
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2.2.5. The Quantified Generators
Since
G =Y eGhe (22)
a,b
holds by tbe completeness of the dual basegande?, we express the quantified
generatoiG by?

G:=Q'GQ= ZQT G%QP = Ze G2, (23)

2.2.6. Checking for the Usual Statistics

The representation principle holds for the usual F-D and B-E statistics. It will
also hold for the Clifford statistics, as we show below.

Proposition. If Q is a quantifier for F-D or B-E statistics then
[G, Qy]=GQly (24)
hold for all anti-Hermitian generatofs.
Proof: We have
[G. QTy] = G*% (8€°Q"y — QTy &)

= G% (éﬁ(ebw + (-1 Q') — QTy &)

= G,8.e%y

= G%p&ay”

=GQly. (25)

Herex = 1 for Fermi statistics and O for Bose.

2.2.7. Quantification and Commutator Algebras

If Ais any algebra, by the commutator algelxal of .4 we mean the Lie
algebra on the elementsdfwhose product is the commutater, p] = ab — bain
A. By the commutator algebra of a quantum systeme mean that of its operator
algebraA,.

In the usual cases of Bose and Fermi statistics (and not in the cases of complex
and real Clifford statistics discussed below!) the quantification rule (23) defines a

3 According to Weinberg (1995), this rule for quantifyioservablesvas first given by Heisenberg
and Pauli (1929, 1930) in their early work on quantum field theory.
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Lie isomorphismA A, — AAs, from the commutator algebra of the individual
to that of the quantified system.

Proposition. For two (arbitrary) operators H and P acting on V

[H, P]=[A,P]. (26)

Proof:

(
( +
— HrSPtu ('\ 5 Au:téré[ASAu_é[AUér"S
( +
(

u
r
= H'sP', (&67€" — &4/'€)
= ér (Hrtptu - PtuHrs) éu
=[H, P]. (27)

This implies that for B-E and F-D statistics, the quantification rule (23) can
be extended from the unitary operators and their anti-Hermitian generators to the
whole operator algebra (including observables) of the quantified system.

2.3. Clifford Statistics
2.3.1. Clifford Quantification

Now let the one-body mode spate = RN+N- = N, R @ N_R be a real
quadratic space of dimensidh = N, 4+ N_ and signaturé\; — N_. Denote the
symmetric metric form o¥/; by g = (gap) := (ehe,). We do not assume thatis
positive-definite.

Clifford statistics (9) is defined by

(1) the Clifford-like generating relations
o+ 40 = vl (29)

forall ¢, ¥ € V,, wheret is a+ sign that can have either value;
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(2) the Hermiticity condition (7)

&l = gar”; (29)
(3) arule for raising and lowering indices
éa = g/gabéb1 (30)

where’ is anothert sign, and
(4) the rule (23) to quantify one-body generators.

Here ¢ = £1 covers the two different conventions used in the literature.
Later we will see that = ¢’ and thatt = ¢’ = +1 and¢ = ¢’ = —1 are both
allowed physically at the present theoretical stage of development. They lead to
two different real quantifications, with either Hermitian or anti-Hermitian Clifford
units.

For the quantified basis, elements\¢f(28) leads to

88y + 8,80 = 5 b (31)

The s, which are assigned grade 1 and taken to be either Hermitian or anti-
Hermitian, generate a gradeehlgebra that we call th&ee Clifford t-algebra
associated witlRN+N- and write as ClifffN.., N_) = CIiff( N..).

In assuming a real vector space of quantum modes instead of a complex
one, we give up-invariance but retain quantum superpositiah + by with real
coefficients. Our theory is nonlinear from the complex point of view.

2.3.2. Cliffordons and Their Permutations

Clifford statistics assembles its quarnthffordons individually described by
vectors into a composite described by spinors, which we cajuadron

A cliffordon is a hypothetical quantum-physical entity, like an electron, not
to be confused with a mathematical object like a spinor or an operator. We cannot
describe a cliffordon completely, but we represent our actions on a squadron of
cliffordons adequately by operators in a Clifford algebra of operators. One encoun-
ters cliffordons only in permuting them, never in creating or annihilating them as
individuals.

Clifford statistics, unlike the more familiar particle statistics (Berezin, 1966;
Feynman, 1972; Negele and Orland, 1988), provides no creators or annihilators.
With each individual mode, of the quantified system they associate a Clifford

unit ya = 2Q%.

4Others considered nonlinear quantum theories, but gave up real superposition as srelagdance
(Weinberg, 1989).



1436 Galiautdinov

In the standard statistics there is a natural way to represent permutations of in-
dividuals in theN-body composite. EacN-body ket is constructed by successive
action ofN creation operators on the special vacuum mode. Any permutation of in-
dividuals can be achieved by permuting these creation operators in the product. The
identity and alternative representations of the permutation géqup the B-E and
F-D cases then follow from the defining relations of the corresponding statistics.

In the case of Clifford statistics, some things are different. There is still an
operator associated with each cliffordon; now it is a Clifford unit. Permutations of
cliffordons are still represented by operators on a many-bagace. Butthe mode
space on which these operators act is now a spinor space, and its basis vectors are
not constructed by creation operators acting on a special “vacuum” ket.

We may represent any swap (transposition of two cliffordons say 1 and 2) by
the difference of the corresponding Clifford units

thp i %(n ). (32)

and represent an arbitrary permutation, which is a product of elementary swaps,
by the product of their representations. That is, as direct computation shows, this
defines a projective homomorphism frd& into the Clifford algebra generated
by theyy. For details, see Appendix F.

By definition, the numbeN of cliffordons in a squadron is the dimensionality
of the individual initial mode spacé. N is conserved rather trivially, commuting
with every Clifford element. We can change this number only by varying the
dimensionality of the one-body space. In one use of the theory, we can do this, for
example, by changing the space—time 4-volume of the corresponding experimental
region. Because our theory does not use creation and annihilation operators, an
initial action on the squadron represented by a spjngirould be viewed as some
kind of spontaneous transition condensation into a coherent mode, analogous to
the transition from the superconducting to the many-vertex mode in a type-II
superconductor. The initial mode of a set or sib of (F-D or B-E) quanta can be
regarded as a result of possibly entangled creation operations. That of a squadron
of cliffordons cannot.

2.3.3. Representation Principle
As with (25), let us verify that definition (23) is consistent in the Clifford case:
[G, QTy] = G% (88°QTy — QTy &)

1
= éGab (éawb + 1ﬂaéb)

GQly. (33)
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This shows thaQf transforms correctly under the infinitesimal unitary trans-
formation ofRN+'N- (cf. Dirac, 1974).

2.3.4. Clifford Statistics and Commutator Algebras

In the usual statistics, the quantifi@ris extended from anti-Hermitian op-
erators to all operators. This is not the case for Clifford quantification. There the
guantification of any symmetric operator is a scalar, in virtue of Clifford’s law. A
straightforward calculation shows that

[H,P]=HP - PH
= oo (GRS (PR IPTHI)). )
2 4
The three simplest cases are:

1. H=H H =HT=[H, H]=0;
2.H=H|G1=-G] =[H,G]=0,
3.6=-Gl,G =-Gf =[G, G]=¢{[G, Gl

Thus Clifford quantification respects the commutation relations for anti-
Hermitian generators if and only f = ¢’ =41 or ¢ = ¢’ = —1, but not for
Hermitian observables, contrary to the Bose and Fermi quantifications, which re-
spect both.

2.3.5. Complex Clifford Statistics

The complexgraded algebra generated by the with the relations (28) is
called thecomplex Clifford algebreCliff c(N) over RN+N-_ It is isomorphic to
the full complex matrix algebr&(2") ® C(2") for evenN = 2n, and to the direct
sumC(2") @ C(2") @ C(2") ® C(2") for odd N = 2n + 1. We regard CIiff(N)
as the kinematic algebra of the complex Clifford composite. As a vector space, it
has dimension .5

Fordimensio\ = 3 spinors of Cliff:(3) have as many parameters as vectors,
but for highem the number of components of the spinors associated with ISJiff(

5Schur (1911) used complex spinors and complex Clifford algebra to represent permutations some
years before Cartan used them to represent rotations. There is a fairly widespread view that spinors
may be more fundamental than vectors, since vectors may be expressed as bilinear combinations of
spinors. One of us took this direction in much of his work. Clifford statistics supports the opposite
view. There a vector describes an individual, a spinor an aggregate. Wilczek and Zee (1982) seem to
have been the first to recognize that spinors represent composites in a physical context, although this is
implicit in the Chevalley construction of spinors within a Grassmann algebra (personal conversations
with Finkelstein, 1999).
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grows exponentially witiN. The physical relevance of this irreducible double-
valued (or projective) representation of the permutation giup/as recognized

by Nayak and Wilczek (1996) and Wilczek (1998b) in a theory of the fractional
guantum Hall effect. We call the statistics based on @I¥f) complex Clifford
statistics.

2.3.6. Breaking the i Invariance

Thus we cannot construct useful Hermitian variables of a squadron by apply-
ing the quantifier to the Hermitian variables of the individual cliffordon.

Thisis closely related to fact that the real initial mode syi&lteof a cliffordon
has no special operator to replace the imaginary iunftthe standard complex
quantum theory. The fundamental task of the imaginary eleiiarthe algebra of
complex quantum physics is precisely to relate conserved Hermitian observables
H and anti-Hermitian generato by

H = —ihG. (35)

To perform this function exactly, the operatomust commute exactly with all
observables.

The central operators and p of classical mechanics are contractions of
noncentral operatossandp = —i hd/dX (Baughet al,, 2001). In the limit of large
numbers of individuals organized coherently into suitable condensate modes, the
expanded operators of the quantum theory contract into the central operators of
the classical theory. Condensations produce nearly commutative variables.

Likewise we expect the central operatdo be a contraction of a noncentral
operatori similarly resulting from a condensation in a limit of large numbers. In
the simple expanded theoiy,the correspondent éf is not centraf.

60ne clue to the nature dfand the locus of its condensation is how the operatoehaves when
we combine separate systems. Since infinitesimal gener@to®s, ... combine by addition, the
imaginaries, i/, . .. of different individuals must combine by identification

P=i=... (36)

for (35) to hold exactly, and nearly so for (35) to hold nearly. The only other variables in present
physics that combine by identification in this way are the tiraéclassical mechanics and the space—

time coordinates* of field theories. All systems in an ensemble must have about theisguseas

all particles have about the samie the usual instant-based formulation, and all fields have about the
same space-time variabbe$ in field theory. We identify the variablesandx* for different systems
because they are set by the experimenter, not the system. This suggests that the experimenter, or more
generally the environment of the system, mainly defines the opdraitre central operators, p
characterize a small system that results from the condensation of many particles. The central operator
i must result from a condensation in the environment; we take this to be the same condensation that
forms the vacuum and the spatiotemporal structure represented by the vaxialolethe standard

model (personal conversations with Finkelstein, 1999).
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The existence of this contractednsures that at least approximately, every Lie
commutation relation between dimensionless anti-Hermitian generatdsC
of the standard complex quantum theory,

[A, B]=C, (37)

corresponds to a commutation relation between Hermitian variatles, —i h B,
—ihC:

[—ihA, —ihB] = —ih(~ihC). (38)

It also tells us that this correspondence is not exact in nature.

Stlickelberg (1960) reformulated complex quantum mechanics in the real
Hilbert spaceR?N of twice as many dimensions by assuming a special real an-
tisymmetric operator : R?N — R?N commuting with all the variables of the
system.

Arealt or Hilbert space has no such operator. For example? ihe operator

E|® O 39
=10 o (39)

is a symmetric operator with an obvious spectral decomposition representing,
according to the usual interpretation, two selection operations performed on the
system, and cannot be written in the foBn= — Jh E relating it to some antisym-
metric generato6 for any real antisymmetrid commuting withE.

On the other hand, if we restrict ourselves to observable operators of the

form
= R (40)
1o e’

y_| 01 41
-1 0] 1)

to restore the usual connection between symmetry transformations and corre-
sponding observables. This restriction can be generalized to any even number of
dimensions (Stckelberg, 1960).

we can use the operatdy

2.3.7. Breakdown of the Expectation Value Formula

For a system described in terms of a general real Hilbert space there is no
simple relation of the fornG = +H between the symmetry generators and the
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observables: the usual notions of Hamiltonian and momentum are meaningless
in that case. This amplifies our earlier observation that Clifford quantification
A — Arespects the Lie commutation relations among anti-Hermitian generators,
not Hermitian observables.

Operationally, this means that selective acts of individual and quantified clif-
fordons use essentially different sets of filters. This is not the case for complex
guantum mechanics and the usual statistics. There some important filters for the
composite are simply assemblies of filters for the individuals.

Again, in the complex case the expectation value formula for an
assembly

AVX =y Xy /vty (42)

is a consequence of the eigenvalue principle for individuals, rather than an indepen-
dent assumption (Finkelstein 1963, 1996). The argument presented in Finkelstein
(1963, 1996) assumes that the individuals over which the average is taken com-
bine with Maxwell-Boltzmann statistics. For highly excited systems this is a good
approximation even if the individuals have F-D or B-E or other tensorial statistics.
It is not necessarily a good approximation for cliffordons, which have spinorial,
not tensorial, statistics.

2.3.8. SPIN-12 Complex Clifford Model

In this section we present a simplest possible model of a complex Clifford
composite. The resulting many-body energy spectrum is isomorphic to that of a
sequence of spin-1/2 particles in an external magnetic field.

Recall that in the usual complex quantum theory the Hamiltonian is related
to the infinitesimal time-translation genera@®r= —G' by G = i H. Quantifying
H gives the many-body Hamiltonian. In the framework of spinorial statistics, as
discussed above, this does not work, and quantification in principle applies to
the anti-Hermitian time-translation generatér not to the Hermitian operator
H. Our task now is to choose a particular generator and to study its quantified
properties.

We assume an even-dimensional real initial-mode spéhce R?" for the
quantum individual, and consider the dynamics with the simplest nontrivial time-
translation generator

o 1
G:= e[ 5 ”} (43)
—1n On

wheree is a constant energy coefficient.
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The quantified time-translation generafbrthen has the form

N
G:=) &Gé
i

n
—e " (B — 8E)
k=1

n
= +e¢ Z (é(-ﬁ-néK - é(é(+n)
k=1

n
2 Z éK+nék
k=1

NI =

n
£ Pern- (44)
k=1

By Stone’s theorem, the generatdrof time translation in the spinor space
of the complex Clifford composite dfl = 2n individuals can be factored into a
HermitianH™) and an imaginary unitthat commutes strongly withl (\):

G=iHM, (45)

We suppose that (\) corresponds to the Hamiltonian and seeks its spectrum.

We note that by (44)G is a sum ofn commuting anti-Hermitian alge-
braically independent operatofg. nyx, k=1,2,..., 0, (en)’ = —Veentk
(Pen)? = =1,

We use the well-known 2x 2" complex matrix representation of the
matrices of the complex universal Clifford algebra associated with the real
quadratic spac®?" (see Appendix F). We can simultanecusly diagonalize the
2" x 2" matrices representing the commuting operataes,y«, and use their
eigenvaluessi, to find the spectrum of G, and consequently dff (™),

A simple calculation shows that the spectrunGofonsists of the eigenvalues

1
M= =201, k=0,1,2....n, (46)
with multiplicity
L (47)
M=M= =K
The spectrum of the Hamiltonigd ™) is
1
Ex = =(n — 2K)s, (48)

2
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with degeneracyk. ThusEy ranges over the interval

1 1
——Ne < E < =-Ng, (49)
4 4

in steps ofe, with the given degeneracies.

Thus the spectrum of the structureléésbody complex Clifford composite
is the same as that of a systemMfspin-1/2 Maxwell-Boltzmann particles of
magnetic momen in a magnetic fieldH, with the identification

1
Vil uH. (50)

Even though we started with such a simple one-body time-translation genera-
toras (G15), the spectrum of the resulting many-body Hamiltonian possesses some
complexity, reflecting the fact that the units in the composite are distinguishable,
and their swaps generate the dynamical variables of the system.

This spin-1/2 model does not tell us how to swap two Clifford units exper-
imentally. Like the phonon model of the harmonic oscillator, the statistics of the
individual quanta enters the picture only through the commutation relations among
the fundamental operators of the theory.

2.3.9. Real Clifford Statistics

According to the Periodic Table of the Spinors (Budinich and Trautman, 1988;
Lounesto, 1997; Porteous, 1995; Snygg, 1997), the free (or universal) Clifford
algebra Cliffy (N, N_) is algebra-isomorphic to the endomorphism algebra of a
moduleX(N,, N_) over a ringR(N,, N_).

The Periodic Table of the Spinors (here= —1):

NN 0o 1 2 3 4 5 6 7

Ny

0 R R, 2R 2C 2H 2H, 4H 8C

1 C 2R 2R, 4R 4C 4H 4H, 8H

2 M C, 4R 4R, 8R 8C 8H 8H,
3 H, 2H 4C B8R 8R, 16R 16C 16H
4 2H 2H, 4H 8C 16R 16R, 32R 32C
5 AC 4H 4H, 8H 16C 32R 32R, 64R
6 8R 8C 8H 8H, 16H 32C 64R 64R,
7 8R, 16R 16C 16H 16H, 32H 64C 128R

(51)
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The ring of coefficient§R (N,, N_) varies periodically with period 8 in each
of the dimensionalitiedl, andN_ of V;, and is a function of signatufd, — N_
alone.

In our application the module&(N,, N_), the spinor space supporting
Cliffg (N4, N_), serves as the initial mode space of a squadroi akal clif-
fordons.R(N.) we call thespinor coefficient rindor Cliff g (N, N_).

2.3.10. Emergence of a Quantum i in the Real Clifford Statistics

The Periodic Table of the Spinors suggests another origin for the coinpiex
guantum theory, and one that is not approximately central but exactly central. Some
Clifford algebras Clifk (N, N_) have the spinor coefficient ring, containing an
elementi. Multiplication by thisi then represents an operator in the center of
the Clifford algebra, which also we designateibyVe may use-multiplication
to represent the top elemept whenevery ! is central and has squagel. This
i € Cliff x(N+) corresponds to thieof complex quantum theory.

Examples

Cliffg(1, 0) is commutative;
Cliff g (0, 3) and Cliffz(5, 0) are noncommutative.

Triads or pentads of such cliffordons could underlie the physical “elementary”
particles, giving rise to complex quantum mechanics within the real.

Let us consider CIiff(0, 3)= C(2). Its Pauli representation ig :=io1,
v := 109, y3 :=ioz with £ = —1. Choose a particular one-cliffordon dynamics
of the form

0 Vv O
G=|-V 0 ¢]. (52)
0 -—¢
Quantification (23) of5 gives
G=iHY (53)
with the Hamiltonian
1({V ¢
HE = 2 : 54
2 |: & —Vi| (&4)

This is also the Hamiltonian for a generic two-level quantum-mechanical system
(with the energy separatiar) in an external potential fielY, like the ammonia
molecule in a static electric field discussed in Feynregal. (1965).
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3. ALGEBRAIC SIMPLICITY AND DIRAC’S DYNAMICS

...itis contrary to the mode of thinking in science to conceive of a thing (the space—time
continuum) which acts itself, but which cannot be acted upon.

Albert Einstein, 1955

3.1. Algebraic Simplicity
3.1.1. Simple Theories and Unification Programs

A simpletheory is one with simple (irreducible) dynamical and symmetry
groups. What is not simple or semisimple we aampoundA contractionof
a theory is a deformation of the theory in which some physical scale param-
eter, called thesimplifier, approaches a singular limit, taken to be 0 with no
loss of generality. The contraction of a simple theory is in general compound
(Indnu, 1964, Irvind and Wigner, 1952; Segal, 1951). Bynplificationwe mean
the more creative, nonunique liverse process, finding a simple theory that contracts
to a given compound theory and agrees better with experiment. The main revo-
lutions in physics of the twentieth century were simplifications with simplifiers
c, G, h.

One sign of a compound theory is a breakdown of reciprocity, the principle
that every coupling works both ways. The classic example is Galilean relativity.
There reciprocity between space and time breaks down, boosts couple time into
space, and there is no reciprocal coupling. Special relativity established reciprocity
by replacing the compound Galilean bundle of space fibers over the time base
by the simple Minkowski space—time. Had Galileo insisted on simplicity and
reciprocity he could have formulated special relativity in the seventeenth century
(unless he were to choose SO(4) instead of SO(1, 3)). Every bundle theory violates
reciprocity as much as Galileo’s. The bundle group couples the base to the fiber
but not conversely. Every bundle theory cries out for simplification.

This now requires us to establish reciprocity between space—time (base co-
ordinatesx* and energy-momenta (fiber coordinateg)”

Einstein’s gravity theory and the Standard Model of the other forces are bundle
theories, with field space as fiber and space—time as base. Therefore these theo-
ries are ripe for simplification (Baugét al, 2001). Here we simplify a spinor
theory, guided by criteria of experimental adequacy, operationality, causality,
and finity.

7Segal (1951) postulated<> p symmetry exactly on grounds of algebraic simplicity; his work stim-
ulated that of lonti and Wigner, and ours. Born (1949) postulateeb p reciprocity, on the grounds
that it is impossible in principle to measure the usual four-dimensional interval of two events within
an atom. We see no law against measuring space—time coordinates and intervals at that gross scale.
We use his term “reciprocity” in a broader sense that includes his.
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Classical field theory is but a singular limit of quantum field theory; it suffices
to simplify the quantum field theory. Quantum field theory in turn we regard as
many-quantum theory. Its field variables all arise from spin variables of single
guanta. Forexample, aspinorfield arises from the theory of a single quantum of spin
1/2 by a transition to the many-body theory,quantification(the transition from
the one-body to the many-body theory, converting yes-or-no predicates about an
individual into how-many predicates about an aggregate ofisomorphic individuals;
as distinct from quantization). To unify field with space—time in quantum field
theory, it suffices to unify spin with space—time in the one-quantum theory, and to
quantify the resulting theory. We unify in this work and quantify in a sequel.

Some unification programs concern themselves with simplifying just the in-
ternal symmetry group of the elementary particles, ignoring the fracture between
the internal and external variables. They attempt to unify (say) the hypercharge,
isospin, and color variables, separate from the space—time variables. Here we close
the greatest wound first, expecting that the internal variables will unite with each
other when they unite with the external variables as uniting space with time inci-
dentally unified the electric and magnetic fields. We represent space—time variables
x"* and p, as approximate descriptions of many spin variables, in one quantum-
spin — space—time structure described in a higher-dimensional spin algebra. This
relativizes the split between field and space—time, as Einstein relativized the split
between space and time.

The resulting quantum atomistic space—time consists of many small exactly
Lorentz-invariant isomorphic quantum elements which wedaibnons’

Simplifying a physical theory generally detaches us from a supporting con-
densaté? In the present situation of physics the prime condensate is the ambient
vacuum. Atomizing space-time enables us to present the vacuum as a conden-
sate of a simple system, and to detach from it in thought, by a phase transition, a
space—time meltdown.

3.1.2. Chronon Statistics

Chronons carry a fundamental time-ugpitone of our simplifiers. Finkelstein
(see Appendix D) has argued thats much greater than the Planck time and is

8 A different approach to the quantum-field — space—time unification is provided by supersymmetry.
It will not be considered in this work.

9Feynmanet al. attempted to atomize space or space-time into quantum spins. Feynman wrote
a space—time vector as the sum of a great many Dirac spin-operator vectors (Feynman’s private
communication with Finkelstein, 1999 ~ %,y/(n), Penrose dissected the sph8fénto a spin
network (Penrose, 1971); his work inspired this program. Veeizar' (1986), attempted a cosmology
of spin-1/2 urs. The respective groups are Feynman’s SO(3, 1), Penrose’s SO(3ackéeigSU(2),
and our SO(8!, 3N) (N > 1).

10For Galileo and Kepler, the condensate was the Earth’s crust, and to detach from it they moved in
thought to a ship or the moon, respectively (Galilei, 1967; Kepler, 1967).
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on the order of the Higgs timie/ My;c?.1! We now replace the classical Maxwell—
Boltzmann statistics of space—time events with the simple Clifford—Wilczek statis-
tics appropriate for distinguishable isomorphic units. This enormously reduces the
problem of forming a theory.

We single out two main quantifications in field theories like gravitation and
the Standard Model:

A classical quantification assembles a space—time from individual space—time
points.

A separate quantification constructs a many-quantum theory or quantum field
theory from a one-quantum theory on that space—time.

In standard physics the space—time quantification tacitly assumes Maxwell—
Boltzmann statistics for the elements of space-time, and the field quantification
uses Fermi-Dirac or Bose—Einstein statistics. The simplified theory we propose
uses one Clifford quantification for all of these purposes.

In this paper we work only with one-quantum processes ¢f 1 chronons.

To describe several quanta and their interactions, getting closer to field theory and
experiment, will require no further quantification, but only an additional internal
combinatory structure thatis readily accomodated within the one Clifford—Wilczek
guantification.

For reader’s convenience we briefly recapitulate the main points of the pre-
vious sections.

Statistics One defines the statistics of an (actual, not virtual) aggregate by
defining how the aggregate transforms under permutations of its units. That is, to
describeN units with given unit mode spadf we give, first, the mode spatg
of the aggregate quantum system and, second, a simple represeRfati&y —
EndVy of the permutation groufy on the givenN units by linear operators on
V. This also defines the quantification that converts yes-or-no questions about
the individual into how-many questions about a crowd.

In Clifford statisticsEnd V) is a Clifford algebraC = CIiff( V1), and soVy
is a spinor space for that Clifford algebra, with= EndVy. We write C; for
the first-degree subspace Gf A Clifford statistics is defined by a projective
(double-valued) representatid® : Sy — C; C C of the permutations by first-
grade Clifford elements over the unit mode specé-inkelstein and Galiautdinov,
2001). To defindR:; we associate with theth unit (foralln = 1, .. ., N) a Clifford
unityy,, and we represent every swap (transposition or 2-cyeia) ¢f two distinct
units by the difference-(y, — ym) € C; of the associated Clifford units.

111n an earlier effort to dissect space—time, assuming multiple Fermi—Dirac statistics for the elements
(Finkelstein, 1969, 1972, 1996). This false start led us eventually to the Clifford—Wilczek statistics
(Finkelstein and Galiautdinov, 2001; Finkelstein and Rodriguez, 1984; Nayak and Wilczek, 1996;
Wilczek, 1998b; Wilczek and Zee, 1982); an example of Clifford—Wilczek statistics is unwittingly
developed in Finkelstein (1996, Chap. 16).
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Some useful terms

A cliffordonis a quantum with Clifford statistics.

A squadronis a quantum aggregate of cliffordons.

A sibis a quantum aggregate of bosons.

A setof quanta is an aggregate of fermions.

A sequencef quanta is a aggregate of Maxwell-Boltzmann quanta with a given
sequential order (Finkelstein, 1969).

Rc can be extended to a spinor representation ofN§@(n a spinor space
Z(N).
The symmetry groufsy of the quantum kinematics for a univerdeof Ny
chronons is an orthogonal group
Gu = SONu+, Nuy-),
Ny = Nu+ + Nu-. (55)
The algebra of observables bf is the simple finite-dimensional real Clifford
algebra
Cy = Cliff(Va) = Cliff[1, ¥(1), ..., ¥(Nu)] (56)

generated by thaly Clifford unitsy(n),n = 1,..., Ny, representing exchanges.
The Clifford unitsy (n) span a vector spaség = C; of first-grade elements & .
Within Cy we shall construct a simplified Dirac—Heisenberg algebra

Apn = Ali, B, %, 71 € (V) (57)

whose commutator Lie algebra is simple and which contracts to the usual Dirac—
Heisenberg algebrdpy in the continuum limit. We factordpy into the Clifford
product

Apn = CIiff( N6g) = Cliff((N — 1)60) Li CIiff( 6o) (58)

of two Clifford algebras, an “internal” algebra from the last hexad and an “external”
algebra from all the others.

We designate our proposed simplificationg-adindi, p, X, andO by 7 and
i, p, % andO. In the limit x — O the tildes ~disappear and the breves~become
hats ~.

3.1.3. Relativistic Dirac—Heisenberg Algebra
Each physical theory defines at least three algebras that should be simple:

1) the associative operator algebra of the system (Finkelstein, 1996, 1999),
2) the kinematical Lie algebra consisting of possible Hamiltonians, and
3) the symmetry Lie algebra of one preferred Hamiltonian.
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There is no second quantization. But there is a second simplification, and
a third, and so on, all of different kinds with different simplifiers. Each of the
historic revolutions that guide us now introduced a simplifier, small on the scale of
previous experience and therefore long overlooked, into the multiplication table
and basis elements of one or more of these algebras, and so deformed a compound
algebra into a simpler algebra that works better. Among these simplifiers are
G, andh.

Here we simplify the free Dirac equation and its underhyirigac—Heisenberg
(real unital associative) algebra

Apn = Ap ® An. (59)

Since we take the notion of dynamical process as primary in physics
(Finkelstein, 1973), we express a measurement (observation, filtering, selection,
yes—no experiment) as a special case of aninteraction between observer and system.
Therefore we first simplify the anti-Hermitian space—time and energy-momentum
symmetry generator§* andX,, not the associated Hermitian observalpésx,.

Then we simplify the Hermitian operators by multiplying the anti-Hermitian ones
by a suitably simplified.

The Dirac—Heisenberg algebra (59) is a tensor product of the Dirac and the
relativistic Heisenberg algebras, in turn defined as follows:

Relativistic Heisenberg algebrady = A[i, p, X] is generated by the imag-
inary uniti and the space—time and energy-momentum translation generators
P, ;== ip, = —ha/ox’ andX* ;= ix*, subject to the relations

[p",%'] = —ihg”,

[6*, P =0,
[X*, %] =0,
[i, p*] =0,
[i, x“] =0,
i?=-1 (60)

Here g’ is the Minkowski metric, held fixed in this paper. The hats orfor
example) indicate that a factorhas been absorbed to make the operator anti-
Hermitian (Adler, 1995). The algebyé, has both the usual associative productand
the Lie commutator product. As a Lie algebfa is compound, Segal emphasized,
containing the nontrivial ideal generated by the unit

The orbital Lorentz-group generators are

0" 1= 0" = —i(R"P’ — R*PH). (61)
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These automatically obey the usual relations
[0, O] = h(g™ O™ — g™ 0" — g'c O 4 g O,
[)’Z;l., O"vk] — h(guv)'zk _ guk)'zv),
[p*, O] = h(g"'p* — g**p"),
[i, 0] =0. (62)

Dirac algebra Ap = Aly,] is generated by Dirac—Clifford unitg, subject
to the familiar relations

{vvs vu} = 200 (63)
As usual we writey,,,.... for the antisymmetric part of the tensgry, . ...

3.2. Simplification of the Relativistic Heisenberg Algebra

As already mentioned, field theory employs a compound field — space—time
bundle with space—time for base and field—space for fiber, just as Galilean space—
time is a four-dimensional bundle witk® for base andk* for fiber. The prototype
is the covector field, where the fiber is the cotangent space to space—time, with
coordinates that we designate py.

Main assumptionin experiments of sufficiently high resolution the space—
time tangent bundle (or the Dirac—Heisenberg algebra) manifests itself as a simple
quantum-field — space—time synthesis.

The space—time variableg' and the tangent space variablgs unite into
one simple construct, as space and time have already united. Now, however, the
simplification requires an atomization, because the field variable actually derives
from an atomic spin.

We first split the space—time tangent bundle into quantum cells. The minimum
number of elements in a cell, for our simplification, is six: four for space—time and
two for a complex or symplectic plane. We provisionally adopt the hexadiécell.

N hexads define a unit mode spate= N6y. There are two possibilities here
as to how to proceed. We can either use the Hexad Lemma described in Appendix
E and work with hexadic cells whose variables commute with one another, or we
can work directly with ™ anticommuting Clifford units of CIiff(], 3N). In any
case the external variables of the quantum probe related to different hexads as
defined below will commute. The first possibility, however, might be the key to
the derivation of the Maxwell-Boltzmann statistics for classical space—time points
from a deeper quantum theory of elementary processes.

12Earlier work, done by Finkelstein and coworkers before our present stringent simplicity requirement,
assumed a pentadic cell (Finkelstein and Rodriguez, 1984). This provided no natural correspondent
for the energy—momentum operators (personal conversation with Finkelstein, 1999).
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Operationally we do not deal with empty space—time. We explore space—time
with one relativistic quantum spié-probe of rest masm ~ 1/x. We express the
usual spin operatorg*, space—time position operator’s, and energy—momentum
operatorsp,, of this probe as contractions of operators in the Clifford algebra
Cliff(3 N, 3N).

We write the dynamics of the usual contracted, compound Dirac theory in
manifestly covariant form, with a Poin@sscalar Dirac operator

D= V“Pu —mc (64)

D belongs to the algebra of operators on spinor-valued functidrg) on space—
time. Any physical spinoty (x"*) is to obey the dynamical equation

Dy = 0. (65)

We simplify the dynamical operatdD, preserving the form of the dynamical
equation (65).

3.2.1. Simplifying External Variables

The compound symmetry group for the Dirac equation is the covering group of
the Poincag’'group ISOII). We represent this as the contraction of a simple group
SO(3, 3) acting on the spinor pseudo-Hilbert (ket) spacé\b@ifford generators
y?(n) (w =0,...,5n=1,..., N) of the orthogonal group SOR8 3N). The
size of the experiment fixes the parameter

As in Dirac one-electron theory (where the spin generators are represented
by second-degree elements

§v = E[yﬂ,y"] EDW, w,v=0,...,3 (66)
4 2

of the Clifford algebra CIiff(1,3)), we use the second-degree elements of our
Clifford algebra Cliffv; = Cliff( N6g) to represent anti-Hermitian generators of
rotations, boosts, space-time, and energy—momentum shifts.

We associate the position and momentum axes with thendy ® elements
of the hexad respectively, so that an infinitesimal orthogonal transformation in
the 45-plane couples momentum into position. This accounts for the symplectic
symmetry of classical mechanics and thef quantum mechanics.

Our choice of the simplifier] X, and p” of the probe is

. 1 N-1 1 N-—-1
==Y i) = —— Y y*n),
N-1 n=1 N-1 n=1

XK

N-1 N-1
D ORMN) = —x Y yHAN),
n=1 n=1
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N-1 N-1
p'=) p'(n):i=¢ Z y"(n), (67)
n—1 n—1

wherey, ¢, andN are simplifiers of our theory, and

y7 () 1= Sy ), v (] (69

To support this choice for the expanded generators we form the following
commutation relations among thewf.([Doplicher, 2001; Snyder, 1947a,b):

[, %] = —2¢x(N — 1)g""T,

2v
(B, 1= -0,
2
e, 0] = - e,
v 2 -
[i, p“] = _¢(N7¢_1)XV’
. 2 o
[I,XM] = +¢(N7X—1) pM. (69)
In (69),
5 h N-1
= 35 o
. h
JH ::Egy“ (n) = L*" 4+ S*. (70)

whereS* is the Dirac spin operatocf. (79)).
J* obeys the Lorentz-group commutation relations

[j;w, j)uc] — h(g[l.)»j\)l( . gu)\j/uc _ g;m jvk + gw( j“}‘), (71)
and generates a total Lorentz transformation of the varia#fleg,,, i, andS*":
[%, 3] = h(g"' %" — g"*%"),
(B, 3] = h(g" B* — g"*B"),
[i, J*] =0,
[éu.v, j)u(] -0 (72)
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There is a mock orbital angular momentum generator of familiar appearance,
O™ i= — (X" P’ — X" P"). (73)

O too obeys the Lorentz-group commutation relations. We rdigteand O
later.
Torecover the canonical commutation relationsdoandp,, we mustimpose

XN -1)=1 (7
and assume that
x — 0,
¢ — 0,
N — oo. (75)

Then the relations (69) reduce to the commutation relations (60) of the relativistic
Heisenberg algebrdy as required.

The three parameteys ¢, 1/N are subject to one constraigtp(N — 1) =
h/2 leaving two independent simplifiersl depends on the scope of the experi-
ment, and is under the experimenter’s control.

We can consider two contractions

1) eithery — 0 with N constant,
2) orN — oo with x constant.

They combine into the continuum limit — 0, N — oo. We fix one simpli-
fier x by supposing that the mass of a probe approaches a finite liit-asoco.

3.2.2. Condensation of i

Since the usual complex uniis central and the simplifieivds not, we suppose
that the contraction process includes a projection that restricts the probe to one
of the two-dimensional invariant subspaces péssociated with the maximum
negative eigenvalue-1 of i2. This represents a condensation that aligns all the
mutually commuting hexad sping*>(n) with each other, so that

y®(n)y®m) - -1, (76)

for anyn andn’. We call this thecondensation of.i

3.2.3. Angular Momenta

As was shown above, three sets of operators obeying Lorentz-group commu-
tation relations appear in our theoty** represents the simplifiestbital angular
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momentungenerators3*” represents thepinangular momentum, and” rep-
resents the simplifietbtal angular momentumgenerators. There is a mock orbital
angular momentun®* (73).

In this section we show th&d — L in the contraction limit.

ConsiderO®. By definition,

éuv — —()‘U" B’ — %V F‘j,u)i'
= +— (Z y4(n) Z ye(m) — Z y*4(n) Z e )) Z y*5(m)

=+ O3 () — y ey () 3 )

n

+ Nx_¢1 Y (A () =y )y ) + v A )y ()

n£n’
y )y o) (v *(n) + »*(n)) + Z ("4 (n)y ()
n;én’
— )y + )y () — )y M) > v S(m)
M=£N, Ms£n’
. 2x9 1 (2,45 45 ALY V5
= N-1k )y (n)ZV (m) + 12(7/ ()y*3(n)
nen'
- J/M(n))/ﬂs(n/) + ¥4y (n)
—yP)y"(n) > y*(m). (77)

ms£n, m=#n’
Thus, in the contraction limit (76)—(75) when condensation singles out the
eigenspace of*>(n)y*3(n’) with eigenvalue-1,

Om — Jw —gv =, (78)

as asserted.

3.3. Simplification of the Dirac Equation
3.3.1. The Dynamics

We simplify the Dirac—Heisenberg algehtgy to Apy = Cliff( N6p), the
Clifford algebra of a large squadron of cliffordons.
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To construct the contraction froniDH to Apy, we group the generators of
Cliff(3N, 3N) into N hexadsy“(n) (w =0,...,5n=1,..., N). Each hexad
algebra acts on eight-component real spinoi&ifsee Appendix E).

ReminderHexadN is used for the spin of the quantum. The remairihg 1
hexads provide the space—time variables.

Dirac’s spin generatorS*” (66) simplify to the corresponding 16 components
of the tensor

S = Ty, (79)

wherew, p =0,...,5andu,v=0,..., 3.
Thenthe most natural choice for Dirac’s dynamiiss

D= Féwpl_wp, (80)
where €f. (70))
. h N-1
Ly = > Yap(N), (81)
n=1
and
26 1
"~ hy(N—1)

The proposed dynamical operator is invariant under SO(3, 3). This symme-
try group incorporates and extends the SO(3, 2) symmetry possessed by Dirac’s
dynamics for an electron in de-Sitter space—time (Dirac, 1935).

D = ié‘“ﬂé —mg
hR “
whereS» andéwp are the five-dimensional spinorial and orbital angular momen-
tum generators an® is the radius of the de-Sitter universe. That group unifies
translations, rotations, and boosts, but notithe

3.3.2. Reduction to the PoindaGroup

We now assume a condensation that reduces SO(3, 3) into SQ($3§2).
Relative to this reduction, thB of (80) breaks up into

D= %ywp(N)Zpr(n) w,p=0,1,...,5

= ¢y"3(N) Y vus(n) + " (N) Y vua(n) + ¥ (N) Y v0()
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+¢y®(N) Y yas(n)
=708, = Ly, S L+ (N - Doy, 82

In the condensate all the operaterS(n)yas(n’) attain their minimum eigen-
value—1. Then

v h
(N — Dpy® — —— (83)
2x
and the dynamics becomes
- 2 o
D= y“5p# — fy““)“(ﬂ + quy’”LM —m,c, (84)
X
with rest mass
h
m, = —. 85

Here we identify the usual Dirac gammgs, for © = 0, ..., 3, of CIiff(IM)
with second-degree elements of the last hexad:

yh = phi=y"(N) (86)

For sufficiently largeN this D reduces to the usual Dirac dynamics.

We identify the masm, withtheN-independentmassofthe Dirac equation
for the most massive individual quanta that the condensate can propagate without
meltdown, on the order of the top quark:

m, ~ 10 GeV, x ~10®s. (87)
The universe is~10%° years old. This leads to an upper bound
Nmax ~ 10%. (88)

Herey is independent oN asN — oo and thaip ~ 1/N — 0asN — oo
even for finitey .

In experiments near the Higgs energy;~ h/x. If we also determinéN by
settingx ~ Ny then all four terms in (84) are of the same order of magnitude.

To estimate experimental effects, however, we must take gauge transforma-
tions into account. These transform the second term away in the continuum limit.
This refinement of the theory is still in progress.

4. CONCLUSIONS

Like classical Newtonian mechanics, the Dirac equation has a compound
(non-semisimple) invariance group. Its variables break up into three mutually
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commuting sets: the space—time — energy—momentum variaéflep,(), the spin
variablesy*, and the imaginary unit

To unify them we replace the space-time continuum by an aggregate of
M < oo finite elements, chronons, described by spinors wif'/? components.
Chronons have Clifford—Wilcezek statistics, whose simple operator algebra is gen-
erated by unit™, m=1,..., M. We express all the variable%, p,, y*, and
i as polynomials iny™. We group theM = 6N chronons intdN hexads for this
purpose, corresponding to tangent spaces; the hexad is the least cell that suffices
for this simplification. There are three simplifiers¢, 1/N, all approaching 0 in
the continuum limit, subject to the constrajnp(N — 1) = h/2 for all N.

Inthe continuum limit the Dirac mass becomes infinite. In our theory, the finite
Dirac masses in nature are consequences of a finite atomistic quantum space—time
structure withy > 0.

The theory predicts a certain spin—orbit coupliy’L ., not found in the
Standard Model, and vanishing only in the continuum limit. The experimental
observation of this spin—orbit coupling would further indicate the existence of a
chronon.

In this theory, the spin we see in nature is a manifestation of the (Clifford)
statistics of atomic elements of space—time, as Brownian motion is of the atomic
elements of matter. As we improve our theory we will interpret better other indica-
tions of chronon structure that we already have, and as we improve our measuring
techniques we shall meet more such signs.

APPENDIX A: OPERATIONALITY AND THE GEOMETRICAL
NATURE OF PHYSICS

A good physical theory should be based on the following.

Operational Postulatelf we do so-and-so, we will find such-and-such.

Generalizing these “doing and finding” actions (carried out by an experi-
menter) to the operations going on in Nature independent of any observer, and
taking them as the basic units of our theory, we arrive at systems analogous to the
ones frequently used in mathematics. By applying to these systems the rules of
mathematical inference we derive new predictions that could be tested in experi-
ment.

One of the most remarkable mathematical systems often used in physics
is the system of geometry in which the basic structural element of paramount
importance is an incidence basis (Mihalek, 1972). The incidence basis consists
of two (incidence) classes, disjoint or not, often called the class of p@irstad
the class of line€, and the incidence relation, usually denotedbipetween the
elements of the two classes.

Traditionally the notion of incidence involves a definite rule of pairing of
elements fronP with elements fron, or, more specifically, their ordered pairing.
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To realize the ordered pairing, the notion of an ordered aib)is intro-
duced, whera andb are the elements of the pair widtthe first andb the second.
The set of all ordered pairg(b), a € P, b € L is called the Cartesian product of
‘P andL and designated b x L.

The study of incidence, then, involves certain subsé® of £ whose speci-
fication establishes an incidence relation between the elements of the two classes,
in analogy to how it is done, for example, in elementary Euclidean geometry.

The properties of a particular incidence relation are called axioms of the
corresponding incidence basis. Together they define a geometry.

It is a remarkable fact that both most important theories of contemporary
physics, quantum theory and relativity, can be regarded as geometries with some
definite forms of the incidence bases. Moreover, any physical theory obeying The
Operational Postulate must have the form similar to some (generalized) geometry.
This is because the postulate itself has the incidence structure: our “doings” and
“findings” can be regarded as the elements of some incidence classes, and the
correlation between the two may be viewed as an incidence relation.

Formulating all of physics in the form of an incidence basis is a tedious
task. It involves considerable labor of stating and proving the theorems of the
corresponding geometrical system and relating them back to the experience in the
form of some definite operational procedures.

What is more important, however, is that trying to fit everything in the usual
geometrical framework, would eventually lead to the same limitations that were
encountered in the classical axiomatic method. This can be seen as follows:

As we know, one of the main problems of the classical axiomatic method
is the “proof” of internal consistency of a given geometry, so that no mutually
contradictory theorems can be deduced from the axioms of an incidence basis
under consideration.

A general method of “solving” this problem is based on exhibiting a basis,
called a consistency basis (a model or interpretation), so that every axiom of the
original basis is converted into a “true” statement about the model (Mihalek, 1972;
Nagel and Newman, 1960). For example, it is possible to show that the model for
the Euclidean geometry can be grounded on the axiomatic system of elementary
arithmetics, etc. Unfortunately in most cases, including this one, the method just
shifts the problem of consistency of a geometry to the problem of consistency of
the model itself. If the geometry is such that a finite model can be built whose
incidence classes contain a finite number of elements, we may try to establish
the consistency of the geometry by direct inspection of the model and determining
whether its elements satisfy the original axioms. However for most of the axiomatic
systems that are important in mathematics and used by physicists finite consistency
bases cannot be constructed.

In this respect, we may regard a physical theory obeying The Operational
Postulate as a consistency basis (a model, interpretation) of a geometry we choose
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to work with. Although from this perspective, of course, everything looks turned
around—usually the theory, not the results of experiments, is regarded as a model—
a closer look reveals that this is just an expression of our constant desire to use
mathematics and its methods in discovering the workings of the world around
us. Here the model is, in a sense, richer than the corresponding geometry, ex-
actly how it is often in mathematics. While in mathematics the extra properties of
the model might obcure the derivation of interesting theorems, in physics these
are the assets, and their discovery constitutes the ultimate goal and purpose of
science.

An alternative to the consistency basis method is the method of an absolute
proof of consistency in which the consistency of the system is sought to be estab-
lished without assuming the consistency of some other model system (Nagel and
Newman, 1960). As far as physics is concerned this method is important in the
mathematical part of the theory—deriving the predictions (see below)—as provid-
ing justification for the use of ordinary logic in manipulating the recorded results of
experiments. However even this ambitious method has failed to solve the general
problem of consistency. Asd@alél showed, it is impossible in principle to establish
the internal logical consistency of a large class of axiomatic systems—including
elementary arithmetics—without adopting principles of reasoning so complicated
that their own internal consistency is no less doubtful than that of the systems
themselves.

Another important limitation of the classical axiomatic method discovered
by Godel is that any axiomatic system within which arithmetic can be developed
is essentially incomplete, meaning that given any consistent set of axioms, there
are true arithmetical statements that cannot be derived from that set.

It is of no surprise then that the chain

do experiment> generalize— idealize— axiomatize (and possibly modify by
introducing additional elements to the incidence basisiierive — translate into
operational procedure> check by doing experiment,

would miss or distort some important physical content and introduce some
inconsistencies of the geometry that will result in the impossibility of performing
the suggested experiments, or simply lead to unverifiable predictions.

Alltheories of physics suffer in one way or another from the above-mentioned
limitations of the very axiomatic method. New phenomena may always be discov-
ered whose existence cannot be predicted (or disproved) within the axiomatic
system, no matter how full the incidence relation of The Operational Postulate of
Physics we choose. That is why the whole body of physics must be formulated in
the operational terms. If then it turns out possible to construct an axiomatic system
that helps us make new predictions, good—we accept it as a working theory. If
not, we may be led to a new scheme (based on a method that is different from the
axiomatic method) in terms of which physics would be formulated.
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So far the usual mathematics with its axiomatic method has worked remark-
ably well. In particular, the system of geometry on which quantum mechanics is
based has been very successful within its domain of applicability. Its basic “in-
gredients” have a well defined operational meaning. By itself quantum mechanics
does not require any interpretation. It is its own interpretation.

Here, following Finkelstein (1996, 1999), we briefly summarize the quan-
tum mechanical operational terminology which will be used throughout in this
work.

We start with the kets, which represent sharp initial actions on the system
under study. These initial actions are typically of the form “release from the source
and then select with a filter.”

Kets do not represent states of the system, contrary to popular belief. Kets
represent what (kind of filtering) we do to the system in the beginning of each
experiment. The notion of a state does not make much sense in quantum mechanics,
especially if applied to one individual quantum in experiment.

Similarly, and dually, the bras represent final filtering actions followed by
detection with an appropriate counter. Also, operators represent all possible oper-
ations on the system. The kets and bras are special kinds of operators. Mathemat-
ically they can be regarded as the elements of the minimal left and right ideals of
system’s operator algebra.

If we do a polarization experiment with a photon,

(source— initial polarizer)— time evolution— (final polarizer— detector),

no matter what we do to the photon after the initial action is completed, we
will never be able to tell by what filter (vertical, horizontal, circular) it was se-
lected initially. To find that out we would have to go back to the initial filter and
look at it.

If the photon had a state, by “determining” it we would be able to tell unam-
biguously what initial filter had been used and what final filter will have to be used
in order for the experiment to end up with a counter click. Such determination is
possible in classical mechanics where the notion of the state is meaningful, but not
in quantum mechanics.

It turns out that the superposition principle (which is a typical reason for
retaining the nonoperational “state” terminology in quantum mechanics) can be
naturally formulated for the initial actions. The initial actions can be viewed as
the elements of a Hilbert space, and so all the usual mathematical formalism of
guantum mechanics survives.

Thus, we again start with two spaces, the ket spaoaf initial selective
actions on the system and its dual sp&deof the final selective actions.

We have an adjoint that maps the two (see Appendix B). If the adjoint is
positive-definite we get the usual quantum mechanics with the positive-definite
metric.
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We contract an initial ket with a final bra using that adjoint, to get the transition
amplitude for the two-stage experiment of the form;

(source— initial selective act}~ (final selective act> detector)

The operational meaning of the adjoistthe following:

The final bra(y| = |y)! which is the adjoint of an initial kety), is such
a final act that the transitiofy| < |y) is always allowed (every time we send
a quantum it goes through both initial and final filters and the detector clicks).
Problems might appear with an indefinite adjoint. In that case some transitions
(¥| < |¥) never happen because sometimigg ) = 0.

Using the adjoint we could naturally introduce metric on betrand VT,
but its operational interpretation would be obscure. It is always better to keep the
operational difference between initial (ket) and final (bra) spaces in mind and talk
about the adjoint, not the metric

Classical mechanics can be easily castinto similar operational form by switch-
ing off superposition of actions.

And finally, The superposition principle

An initial act |yr3) is a coherent superposition of initial a¢ts) and|y),

[W3) = Y1) + |¥2),

if every final act(¢| that occludegyr1) and |y,) also occludegys). In other
words, if the transitiongg| <— |y1) and(¢| < |¥») never happen, then the tran-
sition (¢| < |y3) (for the same actiong| € V1) never happens either. In Dirac’s
notation,

((¢1¥1) = 0 AND (9|y2) = 0) => ({¢|¥3) = 0).

And dually for the superposition of final actions.
Example Spin-1 particle in Stern—Gerlach experiment.
Here,

W) =14+1), [2)=1-1), (¢ =0,
[V3) = [Y1) + [Y2) = [+ 1)+ - 1),
(both filters are opened), with
(0] +1) =0, (0] —1) =0 (transitions never happen).
Then
(0 ys) =0,

meaning that this transition never happens either. (Of course here all the vectors
in question must be properly normalized.)
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Thus in guantum mechanics we do not need states. We do not need nouns
(what systenis), as Finkelstein puts it, all we need are verbs (whade¢o the
system). In fact welefinea particular system by what we cednto it.

By inventing nonoperational concepts like “state vector,” “collapse of the
wave function,” etc., itis easy to drive ourselves into many contradictions and para-
doxes. Keeping the operational meaning of quantum mechanics in mind, however,
can help us avoid such pitfalls.

APPENDIX B: ADJOINT OPERATOR
B.1. Definition

LetF be afield of reallR) or complex C) numbers and/ be aright F-linear
space withrsome arbitrarybasis{e, |a=1,...,dimV}init.
An operatort,

tVo Vv =eyt=wd) ety =y =yl =), (B

fromV toitsleft F-linear dual spac¥  (with somebasis(e, | a=1,...,dimV})
is said to be

e singularwhen

Iy £0:yt=0; (B2)
e symmetriovhen
oty =y' ¢ (B3)
e Hermitian-symmetrievhen
¢ty =T 9)" (B4)
e definitewhen
VY #£0,y Ty £0; (B5)
e positive (definitejvhen
Vi #£ 0,97y > 0. (B6)
Here
¢ty =0l =) (B7)
means thecontractionof ¢f € VT with € V and© stands for the complex
conjugation.

By definition, aradjoint operatoris a mapping : V — V1 thatis antilinear,
nonsingular, and Hermitian-symmetric. (WHER= R, an adjoint operator is linear
and symmetric.)
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Defining
tea =€ = Mpae”, (B8)
we get
¥l = ey = ¥°(tea) = Mpayy*°€”, (B9)
leading to
¥y = Mpay*c. (B10)
The contraction ofyt € VT with ¢ € V is then
v ¢ = Mpay®©9° = (My)'g, (B11)

T meaning transposition.
The assumption of Hermitian symmetry{oimplies

Mpa = MS, (B12)
or, equivalently,
M= MCT = M*. (B13)

The matrix My, of 1 (called thetransition metri¢ is defined relative to some
arbitrary bases of the corresponding spaveandV .

In genera it is not true thate," = €. Rather, in physical applications the
form of the transition metric is decidegperationally namely, relative to the
properly defined actions belonging to some initial and final frames. For example,
in the standard nonrelativistigquantum mechanics it is often possible to find the
frames relative to whicMap, is the identity matrix { is positive-definite) and,’ =
€, so thatyt = (y1,) is determined by the “usual” rule “transposecomplex-
conjugate.” However, in the more complicated situatipnsay be indefinite.

Becausé is nonsingular, its (antilinear) inverse! : VT — V can be defined
by the condition

Tyt iy =y (B14)
If we give the action of ~* on the basis elements bf,
tley =M™, (B15)

then
Tyt = 17 () = (e
= (172€") (Mpayr®©)©
= (T_leb) Mbac Wa



Quantum Theory of Elementary Processes 1463

= et MPMyay®
= €y, (B16)
with
M PMp, =5/ (B17)

Usually,t~! is denoted by the same symboregarding an adjoint operation

as involutory antiautomorphism of the action semigroup.
linear

Now, anylinear operatorA : V —> V acting onV can be represented (rel-
ative to some basi,}) by its matrix A2:
A:es > Ag =g Al (B18)
Then,
¥ AV = A(eay?) == e A" (B19)

A can also be considered as acting (linearly) on the elemgehts the dual
spaceV T by the rule

vl yiA = (ylef)A

=yl (EA)
=y i, AZeP. (B20)
This allows us to writeA in the form
A=g ® A, (B21)

with &, ande® nowbeing the elements of twmutually dualbases
e’ e =85 (B22)

Acting with (B21) on the basis vectey, recovers (B18).

This form of writing allows us to considek as acting orbothdual spaces,
V andVT, by the usual rule: vectors are being acted upon from the left and dual
vectors from the right.

This also gives theesolution of the identityin thedual basey

1=) e®e (B23)
a

Note that where,’ = e* we get the usual resolution of the identity of the standard
quantum mechanics,

1=) e®el (B24)

a
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We may define thadjoint of A denoted byAT : V — V, as
vt Algi= (0" AY)© (Vo ¢ e V). (B25)
Direct calculation leads to
Alp = M2 ACT] Mgp, (B26)
or
Al = M7TA*M. (B27)

This formula is valid with respect to arbitrary bases/oéndV .
We also define thenitary operatorU acting on the vector spaaé (or V1)
as an operator obeying

Ufu =uut =1, (B28)
leading to the condition
Uy)'-Ugp=yT-9. (B29)

The preceding consideration can be generalized from vector spagexito
ules Instead of the operator C acting on the complex fiélde must now consider
an appropriatanti-automorphisnof the correspondingng over which the mod-
ule is built. As an example of such generalization we can mention a module over
the division ring of quaternions with the usual quaternion conjugation.

B.2. The Van der Waerden Notation

In spinorial general relativity the notion of adjoint is generalized to include
the antilinear mappings. For completeness we give a brief summary of the special
dot notationdeveloped for such cases by Van der Waerden.

Generalizing from the symmetric case, aaioint operator(symmetric or
antisymmetric) is a mapping

C:VoV, y=ey?=@wr—Cy =y =ys"= () (B30

which isantilinear, nonsingular, and Hermitian-(anti)symmetric. (Wlies R,
an adjoint operator is linear and (anti)symmetric.)
Defining

Cen = &, := Cp &, (B31)
we get

Y = C(eatr?) = Y2(Cey) i= Ciat e, (B32)
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leading to
¥ = Cha¥. (B33)
The contraction ofy € V with ¢ € V is then

V¢ = Coal (e - e)p" = Cpatr2620

= Cra¥0". (B34)
Here,
€ ef) = o, (B35)
and
Cra = Cpao®. (B36)

The assumption of Hermitian (anti)symmetry@implies
Cta = (=)Car. (B37)

Becaus€ is nonsingular, its (antilinear) inver€s! : V — V can be defined
by the condition

Cl:iymCly:=vy. (B38)
We have
y=Cy
= C7H(vae")
= (C 'y,
= e,C™yy, (B39)
where we have defined
Cle := g,C™. (B40)
Correspondingly,
Yo = CPay, (B41)
We also have
ChC, =42,  CaC™P =62 (B42)

In the spinor algebra of special relativity developed in Rumer and Fet (1977),
V = C?, and there is defined theain antisymmetric bilinear formnV = C? by

G(¥, ¢) := (C¥ | ¢) = (¥ | ) = Crap3". (B43)
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Similarly, onV = C?,

GW, §) == (4 | CT9)" = (¥ | ¢)" = C*'yag;. (B44)
Thus,Cyp, is antisymmetric and can be written as
c=| " . (845)
- _1 0_
Also,
€y = o -1 (B46)
- 1 0 -

APPENDIX C: IDEALS

Very often an algebra can be constructed from smaller algebras by some rules
of assembling them (see, e.g., Benn and Tucker, 1987, p. 317). One particularly
relevant to our theory example of such construction isdinect sumof two alge-
bras, when an algebtd = 5 & C, as a vector space, is a direct sum of the vector
spaced3 andC, and5 e C = C e B = 0, wheres indicates the product ad, be it
associative, commutator (Lie), or efSeAn algebra that can be written as a direct
sum of several algebras is callegtlucible

Reducible algebras contain invariant subalgebras, also knows as ideals. There
are different kinds of ideals: left, right, or two-sided.

A left idealis asubspacd C A suchthatdeZ C 7.
A right idealis asubspac& c A suchthaZ e A C 7.
A two-sided ideals asubspac&€ C AsuchthatdeZ e A C 7.

It is clear that all these ideals are alabalgebrasf A. Moreover, if A =
B @ C thenboth 5 andC are itstwo-sidedideals!* As to the one-sided ideals, it
is possible that, for exampl®, is such an ideal, but is not®

13For associative algebras we wrise€ = CB3 = 0; for Lie algebras we writel, C] = 0.
14proof
(AeB)e A= ((BaC)eB)e(BdC)
=(BeB)®(CeB))e(BaC)
= (BeB)e(BC)
=(BeB)eB)® (BeB)eC()) C B. (C1)

15The relativistic Heisenberg algebra (60) is an example, wheenerates a one-sided ideal, ffut
andX do not.
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Let us now supposd = B + C as a vector space, and let us define an equiv-
alence relation ind by a ~ b if a = b+ ¢ wherec € C. Denote the equivalence
class ofa in the usual way byd].

The equivalence classes so defined can be made into a vector space with the
rules of addition and scalar multiplication as follows:

[a] + [b] = [a+b], (C2)
and
Ala] = [Aa]. (C3)

The question arises whether these equivalence classes can also be made into
an algebra. An obvious choice for multiplication is

[al[b] = [a e b]. (C4)
However, ifcq, ¢ € C then
[a][b] = [a+ ci][b+c2]
=[(a+c)e(b+c)
=[aeb+aec,+creb+crecy)
—[aeb+(aec,+Creb+c1e)], (C5)

which means thatx(e c; + c; e b+ 1 @ ¢;) € C. This is true if, and only ifC is
atwo-sided ideabf 4. The algebra of equivalent classes so constructed is called
guotient algebraof .4 moduloC, which is denoted byl /C.

This is precisely the way in which many important algebras (including the
tensor, the Clifford, etc., algebras) are defined in modern mathematics. We also
use this method to define various forms of quantification.

APPENDIX D: LOCALIZATION PROBLEM
D.1. The Planck Limit: Measuring a Field at a Point

Gravity and quantum theory provide a well-known qualitative lower bound
to the size {-1,) of a space—time cell over which an average field of any kind can
be measured with arbitrary precision.

Argument

Step 1 Localization of the field meter (say, a test particle) within a space-time
cell ~ (ctp)*. By uncertainty relation,

Agty = h.
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Step 2 Schwarzschild radius associated with is
Res — 2GAM  2GAe  2Gh
ST T T T T oy

Step 3 To avoid formation of the horizon, set

RSch < Crp.
Step 4 This leads to the Planck limit,

2Gh
Tp > ? =7.6x 10_44 S, (Dl)

which corresponds to the Planck energy
ep=h/tp =14 x 10° J=8.7 x 10" GeV,

Here,

c=2998x 10° m/s

G =6.673x 10" m3/kg &
h=1054x103Js

1GeV=1602x 101°J=1.783x 102" kg
1GeV!=1973x 10 ¥ cm=0.1973 fm

D.2. The Many-Cell Horizon Limit: Measuring a Field Over
a Region of Space-Time

The validity of QFT not only requires that the field at one space—time point
can be measured, but also that the fielewagrypoint of an experimental region at
one time-instant be measured!

Argument

Step 1Localization of the field meter (say, a test particle) within a space—time cell
~ (ct)*. By uncertainty relation,

Aet = h.

Step 2 If the measurement is performed over a cube of sealg, then there
will be

N~ (T/z)°

cells.
Step 3 The total uncertainty in energy is

T3
T
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Step 4 Schwarzschild radius associated WAIE is

2GAM  2GAE ,T3
2~ o

Step 5 To avoid formation of the horizon, set

RSch =

Rsch< cT.

Step 6 This leads to the many-cell horizon limit,

T> T > 1. (D2)

We estimate this for one of the most precise tests of QED, the Lamb shift,
which is on the order of

AE amp~ 107°eV ~ 10724,
This corresponds to
Tramb ~ h/AELamb ~ 10 Vs

The localization limit is then

TLamb > +/Tp TLamb ™~ 3x 107% S, (D3)

which is 17 orders of magnitude greater than Planck’s limit, and about 100 times
smaller than the chronon size associated with the top quark. This corresponds to
energies on the order of 1000 GeV, which is within the reach of the next generation
accelerators.

Conclusion: In the new theory the localization limit must be present from the
outset. This leads to the idea of a chronon.

APPENDIX E: THE SQUAD LEMMA

Here we reduce a squadron to a sequence of smaller squadrons. This reduces
a single Clifford—Wilczek guantification to two quantifications in succession, one
Clifford—Wilczek and one Maxwell-Boltzmann. This means that one quantifica-
tion can replace the two needed for standard physics.

By asquacdwe mean a squadron whose top elemehhas positive signature
(y'? = 4+1) and is noncentral. A squad must have an even number of units. The
possible signatures depend on the number of units. Any six independent units
of neutral total signature comprise a squad. Any eight independent units of any
sighatures comprise a squa8, . Eight is the least nontrivial number with this
property.N8, is also a squad for any positive integer

If B,C c A are two subalgebras of the (real associative unital) algdbra
we define theroductsubalgebra8C as the span of the set of algebraic products
{bc|be B, cel}.
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If BNC=1andVbe BVceC|bc=ch, thenBC =B ®C, thetensor
productof the two algebras.

Squad Lemma (Budinich and Trautman, 1988; Lounesto, 1997; Porteous, 1995;
Snygg, 1997) If P is the mode space of a squad then

N
Cliff(NP) =; ) Cliff( P). (E1)
1

In other words, a Clifford product dfl squads is algebraicallyyisomorphic
to a Maxwell-Boltzmann sequence of those squads. In this way Clifford statistics
naturally generates Maxwell-Boltzmann statistics for its squads.

Maxwell-Boltzmann statistics then reduces to Fermi, Bose, and all the paras-
tatistics. This seems adequate for much of physics.

The construction of this isomorphism resembles the well-known Jordan—
Wigner construction of higher-dimensional spin representations. We repeat it in
the present context for convenient reference.

For definiteness we exhibit the construction for a neutral hésad/e label
the BN generators,(n) of Cliff( N6g),

Cliff( N6o) = Cliffis(N), ..., io(N), ..., is(1), ..., io(L)], (E2)

by two indices, arinternal hexad indexo = 0, 1, 2,..., 5 and arexternalhexad
indexn=1, 2,..., N.
The generatork,(n) obey the usual Clifford algebraic relations

{io(n),i,(n)} = +28(n, n")G,,(n), (E3)
with
+41 0 0 ©O

_|©@w) O .. |0 -1 0 o
(Gwp) - |: 0 (aaﬂ):| 1 (gﬂv) - 0 0 _1 O ’
0 0 0 -1

10

and are symmetric with respect to the metig,:
io(N)" = +i,(n). (ES)
Define the top element of each hexad,

it(n) :=is(n) ...i1(NYio(N). (E6)
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As we have already indicated,
(i'()* = +1,
(i"()" = —i"(n),
[i'(n),i"(n)] =0,
[i"(n),i, ()] =0 forn=#n,
{iT(n),i,(n)} = 0. (E7)
We now defindocal unitsT',,(n) as the Clifford products

C(n) = (1, [ i m, (E8)

m<n

ordered withm increasing from left to right. Then
[[,(n), T,(n)] =0, forn#n’
{T,(n), T,(n)} = +2G,,(n), (E9)
and
I,(n) = +T,(n) (E10)

is Hermitian with respect tG&,,,(n).
The local units generate the same Clifford algebra Q\ii¢) as the original
pre-local units,,(n). It then follows that

N
Cliff( N6o) =4 Cliff(60) ® . ... ® Cliff( 60) = (X) Cliff(6o(n)) (E11)
n=1

N times

ast-algebras. O

This case of the squad lemma is thexad lemmalt shows how a huge
squadron of prelocal anticommuting elementary processes can break up into a
Maxwell-Boltzmann sequence of commuting hexads of local operations—the seed
of classical space—time. Similar results obtain for any squad.

As a result, each tery of V = N6y has a Clifford algebra CIiff(3, 3) as-
sociated with it, whose spinors have eight real components, formiBg.&nrhe
spinors ofV form the spinor spacE(N6g) = ®)'8y = 8}'.

16Ejght-component spinors have also been used in physics by Penrose (1971), Robson and Staudte
(1996a), Staudte (1996b), and Lunsford (private communication, ****), though not to unify spin
with space-time.
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APPENDIX F: PROJECTIVE REPRESENTATIONS OF THE
PERMUTATION GROUP

Let us now turn to projective representations of the symmetric (permutation)
groups that have long been known to mathematicians, but received little attention
from physicists. Such representations were overlooked in physics much like pro-
jective representations of the rotation groups were overlooked in the early days of
quantum mechanics.

For convenience, following Schur (1911), Karpilovsky (1985), and Hoffman
and Humphreys (1992)f also Wilczek, 1998a,b), we briefly recapitulate the
main results of Schur’s theory.

One especially useful presentation of the symmetric giupn N elements
is given by

Su=(tn, ..t P =1 (Gt4n)° = Ltk = tit),
1<i<N-1, 1<j<N-2, k=<l-2 (F1)
Heret; are transpositions,
t,=(12), t,=(23),..., tn_1=(N—1N). (F2)
Closely related t@y is the groupSy,

S=(zt,.. . 1 Z=12{ =tz t? =7 (t{t] ,)° = z () = z¢t),
1<i<N-1 1<js<N-2, k=<l-2 (F3)
A celebrated theorem of Schur (1911) states the following:
() The groupSy has order 2{!).
(i) The subgroup1, z} is central, and is contained in the commutator sub-
group of Sy, providedn > 4.
(III) SN/{]., Z} ~ Sy.
(iv) If N < 4,then every projective representatiorsqfis projectively equiv-
alent to a linear representation.
(v) If N > 4,then every projective representatiorgqfis projectively equiv-
alent to a representatign
p(SN) = (p(ta), ..., ptn-1)  p()? =z, (p(t))o(tj1)* = Z
pt)et) = zo(t)p(t)),
1<i<N-1, 1<j<N-=-2, k=l-2 (F4)
wherez = 1. In the case = +1, p is a linear representation & .

The groupSy (F3) is called theepresentation groufor Sy.
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The most elegant way to construgb@jectiverepresentatiop(Sy) of Sy is
by using the complex Clifford algebra CIiffV, g) = Cy associated with the real
vector spac&/ = NR,

v, vil = —20n, vj)- (F5)

Here{y:}), is an orthonormal basis af with respect to the symmetric bilinear
form

9(vi, v) = +8ij. (F6)

Clearly, any subspaCe_é of V = NR generates a subalgebra Qil@’f7 0), where
g is the restriction ofy to V x V. A particularly interesting case is realized when
Vis

N N
V= {Zakyk:Zak:O} (F7)
k=1

k=1

of codimension one, with the corresponding subalgebra denotgg hyHoffman
and Humphreys, 1992). _

If we consider a special basig/}f ;> € V (which is not orthonormal)
defined by

, 1
b = ﬁ(yk—VkJrl)v k=1,...,N—-1, (F8)

then the group generated by this basis is isomorphi\toThis can be seen by
mappingt; tot’ andz to —1, and by noticing that

1) Fork=1,...,N —1:
, 1
6 = S0%— M) — me)
1
= E(sz + Vk2+1)

2) ForN — 2> j:
, 1
titi gt = _Zﬁ(yj — 7i+)Wi+1 — vj+2) (Vi — Vi+1)

1

= 50— ne) (F10)

and
/ !4/ 1
taatiti = 502 =) (F11)
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SO

, 3 1
(tjt1{+1) = E(Vj - J/i+2)2

= -1; (F12)
3) FrN—1>m>k+1:

4/ 1
Lty = +§(Vk — ¥k+1)(Ym — VYm+1)

= _%(Vm — Ym+- )k — Yka1)
= —tmlc (F13)
One choice for the matrices is provided by the following construction (Brauer
and Weyl, 1935):
Y- 1=03R - Qo3 (i01)R1®--- 1,
yx=03Q - Q03RQ () ®1® ---®1, k=1,2,3,...,M, (F14)

for N = 2M. Hereo1, o, occur in thekth position, the product involved factors,
ando1, oy, o3 are the Pauli matrices.
If N =2M + 1, we first add one more matrix,

YoM+1 = i()'g ®-- Qo3 (M factors), (F15)
and then define
Fok—1 = yk—1 D yx-1,

Cok = vk ® v,
Camy1 = Yom41 @ (= yam+1)- (F16)

_The representation(Sy) so constructed is reducible. An irreducible module
of Cn_1 restricts that representation to the irreducible representatiq ofince
{t, )N generate€y_; as an algebra (Hoffman and Humphreys, 1992).

APPENDIX G: APPLICATIONS TO THE THEORY OF THE FQHE

In this appendix | will describe my very first attempt at understanding the
Clifford statistics. Using this statistics | proposed a simple model for the grand
canonical ensemble of the carriers in the theory of fractional quantum Hall effect
(FQHE). The model led to a temperature limit associated with the permutational
degrees of freedom of such an ensembile.

As was pointed out before, building on the work on nonabelions of Read and
Moore (1992) and Moore and Read (1990), Nayak and Wilczek (1996) and Wilczek
(1998a,b) proposed a spinorial statistics for the FQHE carriers. The prototypical
example was furnished by a so-called Pfaffian mode (occuring at filling fraction
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v = 1/2), in which X quasiholes form a™2*-dimensional irreducible multiplet
of the corresponding braid group. The new statistics was clearly nonabelian: it
represented the permutation grasypon theN individuals by a nonabelian group
of operators in thdN-body Hilbert space, a projective representatiosf

Since the subject is new, many unexpected effects in the systems of parti-
cles obeying Clifford statistics may arise in future experiments. One simple effect,
which seems especially relevant to the FQHE, might be observed in a grand canon-
ical ensemble of Clifford quasiparticles. Here | give its direct derivation first.

Following Read and Moore (1992) we postulate that only two quasiparticles
at a time can be added to (or removed from) the FQHE ensemble. Thus, we start
with an N = 2n-quasiparticle effective Hamiltonian whose only relevant (to our
problem) energy levelE,, is 2'~-fold degenerate. The degeneracy of the ground
mode with no quasiparticles present is taken tgy) = 1.

Assuming that adding pair of quasiparticles to the composite increases the
total energy by, and ignoring all the external degrees of freedom, we can tabulate
the resulting many-body energy spectrum as follows:

Number of quasiparticles =2n 0 2 4 6 8 10 12 ...
Degeneracyy(Eon) = 2" 0O 1 2 4 8 16 32 ...
Composite energygon, Os 1¢ 2¢ 3¢ 4¢ b5e 6¢

(G1)

Notice that the energy levels so defined furnish irreducible multiplets for
projective representations of permutation groups in Schur’s theory (Schur, 1911),
as was first pointed out by Wilczek (1998a,b).

We now consider a grand canonical ensemble of Clifford quasiparticles.

The probability that the composite contampairs of quasiparticles is

g(EZn) e(nM*Ezn)/ ke T
1+ Z;“;l 0(Eon) eu—Em)/ke T

on—1 a—(nu—Ezn)/keT
= =~ , (G2)
1 + Zn:l 2n—l e—n(é‘—y.)/ ke T

whereu is the quasiparticle chemical potential. The denominator of this expression
is the grand partition function of the composite

P(n,T) =

Z(T) =1 + Z g(Ezn) e(n/L_EZn)/kBT

n=1

=14+ io: 2n—1 e—n(S—M)/kBT (G3)

n=1

at temperaturd .
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Now,

Z 2n—1 e "X — e—X[ZO e—Ox + 21 e—lx + 22 e—2x +-. ]
n=1

o0
— g X Z en(In 2—x). (G4)
n=0
The partition function can therefore be written as
[o.¢]
Z(T)=1+ e (e=1)/keT Z ghin2—(e—p)/keT) (G5)
n=0

This leads to two interesting possibilities (assumireg p):

1) Regime < T < T, where

Te = IfB_In“Z. (G6)
Here the geometric series converges and
—(e—p)/ ke T —(e—p)/2ka T .
2ry= Lo E T 2elnel Smh(; kBg). G7)
The probability distribution is given by
e G
2) RegimeT > T..
Under this condition the partition function diverges:
Z(T) = o0, (G9)
and the probability distribution vanishes:
P(n, T) = 0. (G10)

This result indicates that the temperatdeof (G6) is the upper bound of
the intrinsic temperatures that the quasiparticle ensemble can have. Raising the
temperature brings the system to higher energy levels which are more and more
degenerate, resulting in a heat capacity that diverges at the temp&rature

To experimentally observe this effect, a FQHE system should be subjected to a
condition where quasiparticles move freely between the specimen and a reservoir,
without exciting other degrees of freedom of the system.

A similar limiting temperature phenomenon seems to occur in nature as the
Hagedorn limit in particle physics (Hagedorn, 1968).
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Knowing the partition function allows us to find various thermodynamic
guantities of the quasiparticle system for subcritical temperatuxe$ < T.. We
are particularly interested in the average numberaifs in the grand ensemble:

dlnz
N)ciif = A , G11
() ciitr o (G11)
wherex = e*/%T | or after some algebra,
e (e—)/keT
(n(T))ciir = (= e T (1= 26 T) (G12)
We can compare this with the familiar Bose—Einstein,
1 e (e—n)/keT
(N(Mee = Gmiiat —1 = T_ et (G13)
and Fermi-Dirac,
1 e (e—1)/keT
(n(T))ro (G14)

Tt 1 1te EwkeT

distributions. For the Clifford oscillatotn(T))ciif — +oc0 asT — Tg—, as had
to be expected.

To relate Schur’s theory of projective representations of the permutation
groups (descibed in Appendix F) to physics we may try to define a new, purely per-
mutational variable of the Clifford composite, whose spectrum would reproduce
the degeneracy of Read and Moore’s theory.

A convenient way to define such a variable is by the process of quantification.

Let us thus assume that if there is just one quasiparticle in the system, then
there is a limit on its localization, so that the quasiparticle can occupy only a finite
number of sites in the medium, s&y = 2n. We further assume that the Hilbert
space of the quasiparticle ieal and N = 2n-dimensional, and that a one-body
variable (which upon quantification corresponds to the permutational variable of
the ensemble) is an antisymmetric generator of an orthogonal transformation of

the form
0 1
G=Al [, (G15)
-1, 0O,

whereA s a constant coefficient. Note that in the complex case this operator would
be proportional to the imaginary uiitand the corresponding unitary transforma-
tion would be a simple multiplication by a phase factor with no observable effect.
Since the quantified operator algebra fr> 1 quasiparticles will be complex,

the effect of just one such “real” quasiparticle should be regarded as negligible in
the grand canonical ensemble.



1478 Galiautdinov

In the noninteracting case the process of quantification con@iit#o a
many-body operatoG by the rule

N
5i=) 8G'¢, (G16)
I
where usually andé! are creators and annihilators, butin more general situations
are the generators (that appear in the commutation or anticommutation relations)
of the many-body operator algebra.
In Clifford statistics the generators of the algebra are Clifford upits-

28 = —y T, and so quantification d& proceeds as follows:
n
G =—AY (Bund — &)
k=1

n
= +AY Bernb — 8cbein)
k=1

n
=2A) &unk
k=1

1 n
=3A > Hern- (G17)
=1

Again, by Stone’s theorem, the generaé)racting on the spinor space of
the complex Clifford composite oN = 2n individuals can be factored into a
Hermitian operato© and an imaginary unitthat commutes strongly witl:

G=i0. (G18)

We suppose thad corresponds to the permutational many-body variable men-
tioned above, and seek its spectrum.

We note tha6 is a sum oh commuting anti-Hermitian algebraically indepen-
dentoperatorgcny, K =1, 2,..., N, Min )t = —Venvo (knn)? = —1.1f
we now use 2 x 2" complex matrix representation of Brauer and Weyl (F14) for
the y-matrices, we can simultaneously diagonalize thex2" matrices repre-
senting the commuting operatopgnyx, and use their eigenvaluesi, to find
the spectrum of5, and consequently dd. The final result is obvious: there are
22 eigenkets ofO, corresponding to the dimensionality of the spinor space of
Cliff c(2n). In the irreducible representation §f this number reduces t62', as
required by Read and Moore’s theory.

Note that in this approach the possible number of quasiholes in the ensemble
is fixed by the number of the available sitéé,= 2n. A change in that number
must be accompanied by a change in the dimensionality of the one-quasiparticle



Quantum Theory of Elementary Processes 1479

Hilbert space. It is natural to assume that variations in the physical volume of the
entire system would provide such a mechanism.
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